Jak powstaje burza?

Powietrze w górnych warstwach atmosfery jest o wiele zimniejsze niż przy powierzchni Ziemi. Ciepłe powietrze jest lżejsze od zimnego, więc unosi się do góry. W trakcie wznoszenia powietrze się rozpręża, a przy rozprężaniu wszystkie gazy bardzo się ochładzają. (Tak wygląda na przykład wypływ dwutlenku węgla z przebitego naboju do syfonu. Rozprężający się gaz ochładza się tak bardzo, że jego temperatura spada poniżej -80oC i gaz zamienia się w tak zwany suchy lód, a cały nabój pokrywa się szronem).

Wznoszące się powietrze w trakcie rozprężania staje się chłodniejsze od otoczenia, a więc cięższe i opada na dół. Inaczej przebiega ten proces, gdyW czasie lotu w dół ten dodatni koniec kryształka lub kropli odpycha ze swojej drogi jony dodatnie, natomiast przyciąga i pochłania jony ujemne. Następuje tzw. separacja ładunku. Ładunki ujemne gromadzą się na dole chmury, a dodatnie na górze, (jest to jedna z teorii separacji ładunku w chmurze stworzona przez angielskiego fizyka C. Wilsona). Ujemny ładunek na dnie chmury staje się na tyle duży, że napięcie pomiędzy Ziemią a chmurą dochodzi do 100 000 000 V. (Ziemia wprawdzie też ma ładunek ujemny, ale jest on tak maleńki wobec olbrzymiego ładunku ujemnego dołu chmury, że względem chmury Ziemia jest naładowana dodatnio). Te olbrzymie napięcia powodują wyładowania łukowe, czyli uderzenia pioruna. Sam piorun też jest zjawiskiem bardzo złożonym. Najpierw od chmury odrywa się mały, jasny punkt, zwany prekursorem, który pędzi w kierunku Ziemi z prędkością 50 km/s. Przebiega 50 m i zatrzymuje się. "Odpoczywa" około 50 nanosekund i znowu posuwa się o krok, zwykle w nieco innym kierunku. Takimi skokami przebywa drogę aż do Ziemi. Droga, którą przebył, pełna jest ładunków ujemnych i staje się jakby drutem łączącym chmurę z Ziemią. Gdy w końcu ładunek ujemny zbliży się do Ziemi, z Ziemi zaczyna się wyładowanie w jego kierunku. Główne, najjaśniejsze uderzenie biegnie od Ziemi do góry, powodując błysk i grzmot. Prąd płynący w błyskawicy ma natężenie w szczycie około 10 000 A ta czasem więcej). Ale to jeszcze nie koniec. Po kilku setnych sekundy biegnie w dół nowy prekursor, zwany "ciemnym prekursorem". Biegnie tą samą drogą co pierwszy, ale już nie przystaje. Znowu następuje uderzenie powrotne po przygotowanej przez niego drodze. Takich kolejnych uderzeń może być wiele (zaobserwowano do 42 błyskawic na tym samym torze), zawsze jednak następują one bardzo szybko po sobie. Potem chmura "odpoczywa" przez co najmniej 5s.
W czasie lotu w dół ten dodatni koniec kryształka lub kropli odpycha ze swojej drogi jony dodatnie, natomiast przyciąga i pochłania jony ujemne. Następuje tzw. separacja ładunku. Ładunki ujemne gromadzą się na dole chmury, a dodatnie na górze, (jest to jedna z teorii separacji ładunku w chmurze stworzona przez angielskiego fizyka C. Wilsona). Ujemny ładunek na dnie chmury staje się na tyle duży, że napięcie pomiędzy Ziemią a chmurą dochodzi do 100 000 000 V. (Ziemia wprawdzie też ma ładunek ujemny, ale jest on tak maleńki wobec olbrzymiego ładunku ujemnego dołu chmury, że względem chmury Ziemia jest naładowana dodatnio). Te olbrzymie napięcia powodują wyładowania łukowe, czyli uderzenia pioruna. Sam piorun też jest zjawiskiem bardzo złożonym. Najpierw od chmury odrywa się mały, jasny punkt, zwany prekursorem, który pędzi w kierunku Ziemi z prędkością 50 km/s. Przebiega 50 m i zatrzymuje się. "Odpoczywa" około 50 nanosekund i znowu posuwa się o krok, zwykle w nieco innym kierunku. Takimi skokami przebywa drogę aż do Ziemi. Droga, którą przebył, pełna jest ładunków ujemnych i staje się jakby drutem łączącym chmurę z Ziemią. Gdy w końcu ładunek ujemny zbliży się do Ziemi, z Ziemi zaczyna się wyładowanie w jego kierunku. Główne, najjaśniejsze uderzenie biegnie od Ziemi do góry, powodując błysk i grzmot. Prąd płynący w błyskawicy ma natężenie w szczycie około 10 000 A ta czasem więcej). Ale to jeszcze nie koniec. Po kilku setnych sekundy biegnie w dół nowy prekursor, zwany "ciemnym prekursorem". Biegnie tą samą drogą co pierwszy, ale już nie przystaje. Znowu następuje uderzenie powrotne po przygotowanej przez niego drodze. Takich kolejnych uderzeń może być wiele (zaobserwowano do 42 błyskawic na tym samym torze), zawsze jednak następują one bardzo szybko po sobie. Potem chmura "odpoczywa" przez co najmniej 5 s.
Z opisanego mechanizmu widać również, dlaczego piorun uderza w wystające, ostre przedmioty. Ładunki elektryczne najchętniej gromadzą się na wszelkiego rodzaju ostrzach. Błyskawica przebiega właściwie od Ziemi do chmury, więc gdy prekursor znajdzie się w pobliżu wystającego, ostrego budynku lub drzewa, wyładowanie zaczyna się od tego ostrzą i dosięga prekursora.
A grzmot? Na drodze przejścia błyskawicy wydziela się bardzo duża ilość ciepła (zgodnie z prawem Joule'a ) i powietrze rozgrzane do bardzo wysokiej temperatury gwałtownie się rozpręża. Stąd huk jak przy wystrzale.
W ten uproszczony sposób można przedstawić powstawanie burzy, błyskawic i piorunów. W rzeczywistości mechanizm powstawania burzy i piorunów jest dużo bardziej skomplikowany i jeszcze nie do końca wyjaśniony.